Group-2 elevents

Be 1. Reactivity increase

My 2. M. p decrease

Ca 3. density increase

So 4. Reducing power increase

Ba V 5. Electropositivity increase

6. Ionisation energy decrease.

7. Rate of reaction with vater

increase.

Solubility of the Gr-2 Lydroxide

Be (OH)₂

Mg (OH)₂

Ca (OH)₂

Sor (OH)₂

Ba (OH)₂

Solubility of the Gr-2 sulfates

Be 504
Ng 504 Solubility decrease
Ca 504

5r 504 Ba 504

Solubility of the Gr-2 carbonates

* All Gr-2 carbonates are insoluble in H20

Solubility of the Gir-2 hitrates

* All nitrates are soluble in H20

Solubility of the Gr-2 oxide

Beo
MgO Solubility
CaO increase
SorD
Bao

Thermal Stability of the Grp-2 carbonates

Be CO3 (5) Thermal Stability

My CO3 increase

Ca CO3 (5) More heat is needed to decompose

Thermal stability of the Grp-2 nitrates

So (NO3)2 Ba (NO3),

Be (NO3)₂ | ©Thermal stability increase Mg (NO3)₂ | © More heat is needed (a (NO3)₂ to decompose Sr (NO3),

Reaction: Ca(NO3)2 heat (a0 + NO2 + O2

Flane color

Li > red pa > yellow/golder yellow KS lilac

Mg > Bright white Ba -> Green Ca > red Sr -> red

Periodicity

Pa Mg Al Si PS Cl Ar

Reactions of the third period elements with oxygen Na + 02 -> Na20 Burns with yellow/
golden yellow Mg + Oz -> Mg O Burrs with bright white Al + 02 neat Al203 Burns with bright white flave $Si + O_2 \rightarrow Si O_2$ P+02 1eat P203 P+0, 2eat P205 Sf 02 202 (Blue flame) P+0, 200 P4010 P+0, Hent P40

Reactions of the third period oxides with water

No20 +
$$H_{20} \rightarrow N_{a0}H$$

Mg0 + $H_{20} \rightarrow N_{g}(OH)_{2}$
 $Al_{2}O_{3} + H_{20} \rightarrow N_{0}$ reaction

 $SiO_{2} + H_{20} \rightarrow N_{0}$ reaction

 $P_{2}O_{3} + H_{20} \rightarrow H_{3} PO_{3}$
 $P_{4}O_{6} + H_{20} \rightarrow H_{3} PO_{3}$
 $P_{2}O_{5} + H_{20} \rightarrow H_{3} PO_{4}$
 $P_{q}O_{10} + H_{20} \rightarrow H_{3} PO_{4}$
 $SO_{2} + H_{20} \rightarrow H_{2} SO_{3}$
 $SO_{3} + H_{20} \rightarrow H_{2} SO_{4}$
 $Cl_{2}O_{2} + H_{20} \rightarrow H_{2} SO_{4}$
 $Cl_{2}O_{2} + H_{20} \rightarrow H_{2} SO_{4}$

Reactions of the third period oxides with MaOH (agr)

$$Na_2O + NaOH \longrightarrow No$$
 reaction
 $MgO + NaOH \longrightarrow NaAO_2 + HzO$
 $Al_2O_3 + NaOH \longrightarrow NaAO_2 + HzO$
 $Al_2O_3 + 2NaOH + 3H_2O \longrightarrow 2NaAI(OH)_y$
 $SiO_2 + NaOH \longrightarrow Na_2SiO_3 + H_2O + Configuration hother in the concentrated
 $P_2O_3 + NaOH \longrightarrow Na_2HPO_3 + H_2O + Concentrated$
 $P_4O_6 + NaOH \longrightarrow Na_2HPO_3 + H_2O + Concentrated$
 $P_2O_5 + NaOH \longrightarrow Na_2HPO_3 + H_2O + Concentrated$
 $P_4O_{10} + NaOH \longrightarrow Na_2HPO_3 + H_2O + Concentrated$
 $P_4O_{10} + NaOH \longrightarrow Na_2HPO_3 + H_2O + Concentrated$
 $P_4O_{10} + NaOH \longrightarrow Na_2HPO_3 + H_2O + Concentrated$
 $P_4O_{10} + NaOH \longrightarrow Na_2HPO_3 + H_2O + Concentrated$$

Reactions of the third period elements with Chlorite

Na +
$$Cl_2$$
 \rightarrow NaCl
Mg + Cl_2 \rightarrow MgCl₂
Al + Cl_2 \rightarrow Al Cl_3
Si + Cl_2 \rightarrow SiCl'₂ (color less fuming liquid)

$$P + Cl_2 \rightarrow PCl_3 \quad Cliquid)$$
 $P + Cl_2 \rightarrow PCl_5 \quad (solid)$
 $S + Cl_2 \rightarrow SCl_2 \quad Cliquid)$

Reactions of the third period chlorides
with water

*
$$\text{Macl}_{(s)}$$
 + (aq) \rightarrow $\text{Na}_{(aq)}^{\dagger}$ + $\text{Cl}_{(aq)}^{\dagger}$ $ph = 7$
* $\text{Mg}_{(2(s))}$ + (aq) \rightarrow $\text{Mg}_{(aq)}^{2\dagger}$ + $2\text{Cl}_{(aq)}$ $ph = 6\cdot 9$
* $\text{Al}_{(13)}$ + 6H_{20} \rightarrow $\text{EAI}_{(H_{20})_{5}}(0\text{H}_{)}$ $)^{\dagger 2}$ + H^{\dagger} + $3\text{Cl}_{(ph = 1 - 3)}$

SiC14 +2H₂O
$$\rightarrow$$
 SiO₂ +4HC1
SiC14 + H₂O \rightarrow Si(OH)₄ + HC1
SiC14 + 2H₂O \rightarrow SiO₂ + 4H⁺ + 4C1
PH = 1-3

$$P Cl_{5} + H_{20} \rightarrow H_{3} Po_{4} + HCl$$
 $P Cl_{3} + H_{20} \rightarrow H_{3} Po_{3} + HCl$
 $P Cl_{2} + H_{20} \rightarrow G + Go_{2} + HCl$

Formula of Chloride	Nacl	MgCl2	Alcz	PC13	SCIZ
Axidation					

UN Color	1	I	I	I	l
number of	11	+2	+3	+3	+2
elevents in					
me chloride					

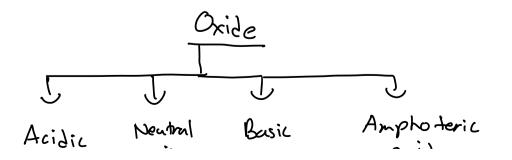
By considering the electronic configuration of elecents, explain the variation in oxidation number

Na to Al

6) loss of valence electrons to give electronic configuration of the

(=) 5; to 5

@ Guir or sharing of outer electrons to give electronic configuration of Ar.


Metal hydride

Metal hydride + water > metalhydroxide +
hydrogen gas
NaH + H2O > NaOH + HZ

Metal Ditrides

Metal nitride + water -> netal hydroxide + Ammonia

Period 3 oxides	Na ₂ O	M30	A1203	5:02	P4 010	502 5 <i>0</i> 3
Acidic/ Basic	Basic	Basic	Arphotonic	Acidic	Acidic	Acidic
Relative m-P	high	high	んらん	ار النوك	10-	100
Electrical conductivity in molten starte	Conductor	Corductor	Carductor	Non-	non condector	ton Conductor
Chemical bonding	ionic	ionic	ionic	Covultit	(ovalex+	covalent
Structure	giaht ionic	Giant ionic	grand		1 3/-1	1

- O Oxides are binary compounds.
- One of the elements in oxygen.

Acidic Oxide

- @ Non netallic oxides which can react with bases only are called acidic oxides.
- E Non-metallic oxides react with Later to make acidic solution.

 (Exception: SiOz; on acidic oxide but cannot react with water.)

SO₂ CO₂ NO₂ CI₂O₇ P₂O₅ SO₃

Neutral oxides

Non-metallic oxides which can not react with acids and bases are called heutral oxides.

H20, CO, NO, N20

Ampoteric Oxides

5 Metallic Oxides which can react with both acids and bases are called anphotoric oxides. Alzo3, Zno, Pbo, Gazo3

Basic Oxide

Metallic oxides which can react with acids only are called basic Oxides.

NazO, MgO